HUBUNGAN PENGETAHUAN DAN SIKAP DENGAN PERILAKU SELF DIAGNOSIS KESEHATAN REPRODUKSI BERBASIS ARTIFICIAL INTELLEGENCE (AI) PADA GENERASI Z

Authors

  • Fitri Kurnia Rahim Universitas Bhakti Husada, Indonesia
  • Icca Stella Amalia Universitas Bhakti Husada, Indonesia
  • Bunga Farida Universitas Bhakti Husada, Indonesia
  • Lidiyah Lidiyah Universitas Bhakti Husada, Indonesia
  • Nadila Salsabila Universitas Bhakti Husada, Indonesia

DOI:

https://doi.org/10.59548/ps.v3i1.621

Keywords:

Artificial Intelligence, Self-Diagnosis, Reproductive Health, Adolescents

Abstract

Background: Artificial Intelligence (AI) has increasingly been used by adolescents as a source of health information, including for reproductive health self-diagnosis. Although AI offers rapid and accessible information, its use without adequate health literacy may lead to misinterpretation, anxiety, and inappropriate health decisions. Therefore, it is essential to examine the relationship between adolescents’ knowledge and attitudes and their self-diagnosis behavior using AI. Method: This study employed a quantitative approach with a cross-sectional design. A total of 81 tenth-grade students at SMAN 9 Kota Cirebon were selected using cluster sampling. Data were collected through a structured questionnaire measuring knowledge, attitudes, and AI-based self-diagnosis behavior. Data analysis included univariate and bivariate analysis using the Chi-Square test with a significance level of 0.05. Results: Most respondents had used AI as a health information source (96.3%). The majority demonstrated a moderate level of knowledge (81.5%), positive attitudes toward AI use (98.8%), and moderate self-diagnosis behavior (53.1%). Statistical analysis revealed a significant association between knowledge and AI-based self-diagnosis behavior (p = 0.000), while attitudes showed no significant association (p = 0.639). Conclusion: Knowledge significantly influences adolescents’ self-diagnosis behavior using AI, whereas attitudes do not show a significant relationship. Strengthening health and digital literacy is crucial to ensure that AI use supports, rather than replaces, professional medical consultation.

References

Adi, A., & Kusuma, R. (2022). Pemanfaatan artificial intelligence da-lam edukasi kesehatan reproduksi remaja: Studi kasus di Jakarta. Jurnal Teknologi Informasi dan Komunikasi Indonesia, 15(2), 45–62.

Diana, R., Nugroho, A., & Fitri-ani, Y. (2024). Perilaku berisiko dan tantangan kesehatan reproduksi rema-ja di era digital. Jurnal Promosi Kesehatan Indonesia, 19(1), 45–54.

Kementerian Kesehatan Repub-lik Indonesia. (2022). Profil kesehatan Indonesia tahun 2022. Jakarta: Ke-menterian Kesehatan RI.

Kementerian Kesehatan Repub-lik Indonesia. (2023). Survei Kesehatan Indonesia (SKI) 2023. Ja-karta: Kementerian Kesehatan RI.

Lestari, D. (2021). Pengetahuan kesehatan reproduksi remaja per-empuan di daerah pedesaan Indone-sia. Jurnal Kesehatan Masyarakat In-donesia, 12(3), 78–89.

Notoatmodjo, S. (2014). Ilmu perilaku kesehatan. Jakarta: Rineka Cipta.

Nugroho, B., Rahmawati, T., & Hidayat, A. (2023). Integrasi artificial intelligence dalam seminar edukasi kesehatan: Tren global dan aplikasi lokal. Jurnal Pendidikan Kesehatan Indonesia, 18(1), 112–128.

Pratama, R. (2022). Pengaruh literasi digital terhadap perilaku pen-carian informasi kesehatan pada rema-ja. Jurnal Kesehatan Masyarakat, 17(2), 145–155.

Putra, A., & Mawarni, D. (2021). Pengetahuan sebagai prediktor perubahan perilaku kesehatan. Jurnal Kesehatan Masyarakat Nusantara, 6(1), 22–30.

Rahman, F., & Sari, N. (2023). Efektivitas artificial intelligence dalam retensi informasi kesehatan: Kasus pencegahan diabetes dan vaksinasi. Jurnal Teknologi Kesehatan Digital, 14(4), 201–215.

Rahmawati, S. (2020). Sikap dan perilaku penggunaan teknologi kesehatan pada remaja. Jurnal Kesehatan Masyarakat, 15(2), 98–107.

Regina, A., Pratama, D., & Les-tari, S. (2022). Kesehatan reproduksi remaja dan faktor risiko perilaku sek-sual. Jurnal Kesehatan Masyarakat, 17(2), 123–131.

Rosenstock, I. M., Strecher, V. J., & Becker, M. H. (2018). Social learning theory and the Health Belief Model. Health Education Quarterly, 15(2), 175–183.

Sadida, N., Hidayat, A., & Kurniawan, B. (2021). Literasi kesehatan digital dan fenomena self-diagnosis pada remaja. Jurnal Psikologi Kesehatan, 8(2), 98–107.

Santoso, B. (2020). Karakteris-tik Generasi Z dan implikasinya ter-hadap pendidikan kesehatan. Jurnal Pendidikan Kesehatan, 9(1), 34–42.

Sari, D. P., Rahmawati, Y., & Luthfi, M. (2023). Tantangan kesehatan reproduksi remaja di Indo-nesia: Analisis data BPS dan Kemen-terian Kesehatan. Jurnal Kesehatan Reproduksi Indonesia, 16(1), 23–40.

Setiawan, D., Prabowo, H., & Laksmi, N. (2021). Pemanfaatan teknologi digital dalam pencarian in-formasi kesehatan pada remaja. Jurnal Komunikasi Kesehatan, 10(2), 67-76.

Sitanggang, R., Lubis, M., & Nasution, H. (2025). Implementasi natural language processing dan long short-term memory pada chatbot edukasi kesehatan remaja. Jurnal Sis-tem Informasi Kesehatan, 4(1), 55–63.

Sorensen, K., Van den Broucke, S., Fullam, J., Doyle, G., Pelikan, J., Slonska, Z., & Brand, H. (2015). Health literacy and public health: A systematic review and integration of definitions and models. BMC Public Health, 12(80), 1–13.

Topol, E. J. (2019). Deep medi-cine: How artificial intelligence can make healthcare human again. New York: Basic Books.

World Health Organization. (2023). Adolescent health. Geneva: World Health Organization

Downloads

Published

2026-02-06

How to Cite

Rahim, F. K., Amalia, I. S., Farida, B., Lidiyah, L., & Salsabila, N. (2026). HUBUNGAN PENGETAHUAN DAN SIKAP DENGAN PERILAKU SELF DIAGNOSIS KESEHATAN REPRODUKSI BERBASIS ARTIFICIAL INTELLEGENCE (AI) PADA GENERASI Z. Jurnal Psikotes, 3(1), 39–48. https://doi.org/10.59548/ps.v3i1.621